Moog knows the challenges faced by wind turbine manufacturers and operators when it comes to pitch control. Consequently we are committed to offering the reliability, high performance and maintenance-free systems you need for maximum uptime in onshore or offshore turbines.

Moog is introducing a unique, cost effective AC synchronous electromagnetic servo motor, designed to meet the unique requirements of pitch systems. When combined with the Wind Turbine Servo Drive in the Moog Pitch System, it offers higher performance and additional safety. The new Pitch Servo Motor offers maximum reliability and very low maintenance cost due to its innovative design.

Built to meet the requirements of corrosion class CSM (according to DIN 12944 Standards) and with wind proof connector technology, this motor is suitable for Hot Climate Versions (HCV)/Cold Climate Versions (CCV) and offshore areas. From the hardware to the connectors to the plug, this motor is designed to work reliably under some of the most demanding environmental conditions including high vibration, extreme temperatures and high humidity.

ADVANTAGES

- **Long Life and Very Low Maintenance** – AC synchronous motor technology produces extremely long life and very low maintenance costs as it minimizes mechanical wear.

- **Protection in the event of grid loss** – Compact motor offers high power density to reach required torques and speeds needed for safe feathering.

- **Extra Safety** – Sensorless control means the Moog Pitch Servo Drive can control the motor in the event that position information is lost from the Servo Motor’s resolver.

APPLICATIONS

Actuation for Pitch Systems in Onshore and Offshore Wind Turbines.
FEATURES AND BENEFITS

AC synchronous motor, IP65, natural cooled
- Low maintenance, long-life product

Maximized Torque versus Speed operation area
- Electromagnetic design and capabilities of the Moog Pitch Servo Motor guarantee a maximized Torque versus Speed operation area
- Optimized behavior for emergency conditions at dynamically decreasing and/or very low DC link voltage

High peak power density
- Allows for smaller motor (reduced cost), and higher dynamics (lower rotor inertias), while achieving feathering requirements even in the “Grid Loss” condition

Sensorless control
- Additional safety feature where the Motor Pitch Servo Motor can control the motor in the event of motor positional feedback loss
- Double pitch torque at 0 rpm

Integrated permanent magnet brake
- No wear of brake pad due to mechanically fixed airgap
- Brake designed for motor lifetime
- Maximized peak torque capability with minimum installation space
- Minimized internal backlash

Wind-proof connector technology
- Heavy-duty connector for robust and quick installation inside the hub

IEC112 or IEC132 front flange
- Using standard DC motor mechanical interface dimensions simplifies redesign and retrofit from DC to AC pitch systems

Flexibility
- The mechanical/electrical interfaces and performance characteristics can be tailored to meet customer-specific requirements

CHARACTERISTICS

<table>
<thead>
<tr>
<th>Model</th>
<th>PMC6-030</th>
<th>PMC6-045</th>
<th>PMC6-060</th>
<th>PMC6-075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous stall torque M_O</td>
<td>28 (248)</td>
<td>40 (354)</td>
<td>55 (487)</td>
<td>65 (575)</td>
</tr>
<tr>
<td>Continuous stall current I_0</td>
<td>17</td>
<td>21</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>Nominal torque M_n</td>
<td>23 (204)</td>
<td>32 (283)</td>
<td>42 (372)</td>
<td>50 (443)</td>
</tr>
<tr>
<td>Nominal current I_n</td>
<td>15</td>
<td>17</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>Nominal speed n_n</td>
<td>2,200</td>
<td>2,000</td>
<td>1,700</td>
<td>1,500</td>
</tr>
<tr>
<td>Nominal power P_n</td>
<td>5.30 (7.11)</td>
<td>6.70 (8.99)</td>
<td>7.48 (10.0)</td>
<td>7.85 (10.5)</td>
</tr>
<tr>
<td>Pitch torque M_{PTH}</td>
<td>28 (248)</td>
<td>40 (354)</td>
<td>55 (487)</td>
<td>65 (575)</td>
</tr>
<tr>
<td>Pitch current I_{PTH}</td>
<td>17</td>
<td>21</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>Pitch speed n_{PTH}</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Pitch power P_{PTH}</td>
<td>1.47 (1.97)</td>
<td>2.09 (2.81)</td>
<td>2.88 (3.86)</td>
<td>3.40 (4.56)</td>
</tr>
<tr>
<td>Torque (0.5 s)** M_{max}</td>
<td>105 (929)</td>
<td>145 (1283)</td>
<td>195 (1726)</td>
<td>250 (2213)</td>
</tr>
<tr>
<td>Peak current (0.5 s) I_p</td>
<td>67</td>
<td>90</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>Peak torque @ 80 Arms S2/3 s $M_{\text{max}}^{\text{peak/PDO}}$</td>
<td>105 (929)</td>
<td>130 (1151)</td>
<td>160 (1416)</td>
<td>175 (1549)</td>
</tr>
<tr>
<td>Peak torque @ 100 Arms S2/3 s $M_{\text{max}}^{\text{peak/PDO}}$</td>
<td>105 (929)</td>
<td>155 (1372)</td>
<td>195 (1726)</td>
<td>205 (1814)</td>
</tr>
<tr>
<td>Maximum speed n_{max}</td>
<td>3600</td>
<td>3300</td>
<td>3000</td>
<td>2700</td>
</tr>
<tr>
<td>Torque constant k_T</td>
<td>1.65 (14.6)</td>
<td>1.90 (16.9)</td>
<td>1.96 (17.4)</td>
<td>2.10 (18.6)</td>
</tr>
<tr>
<td>Voltage constant k_e</td>
<td>89</td>
<td>98</td>
<td>107</td>
<td>119</td>
</tr>
<tr>
<td>Thermal time constant t_{th}</td>
<td>3,900</td>
<td>4,100</td>
<td>4,200</td>
<td>4,400</td>
</tr>
<tr>
<td>Winding resistance at 25°C (77°F) R_{g}</td>
<td>0.48</td>
<td>0.34</td>
<td>0.27</td>
<td>0.23</td>
</tr>
<tr>
<td>Ohm winding inductance (unsaturated) L_q / L_d</td>
<td>8.0 / 3.2</td>
<td>7.0 / 3.0</td>
<td>5.74 / 2.28</td>
<td>4.3 / 1.67</td>
</tr>
<tr>
<td>Rotor inertia J</td>
<td>134 (1,182)</td>
<td>173 (1,529)</td>
<td>210 (1,860)</td>
<td>247 (2,190)</td>
</tr>
<tr>
<td>Weight m</td>
<td>35 (7.72)</td>
<td>45 (9.92)</td>
<td>54 (11.9)</td>
<td>66 (14.6)</td>
</tr>
<tr>
<td>Overall motor length L</td>
<td>390 (15.4)</td>
<td>427 (16.8)</td>
<td>467 (18.4)</td>
<td>506 (19.9)</td>
</tr>
</tbody>
</table>

Notes:
1. Motor performances as measured with Moog’s Pitch Servo Drive with Loss optimized control
2. Motor pole count: 8 (i.e 4 pairs)
3. DC Link voltage 565 V
4. Continuous ratings values at 50°C (122°F) ambient temperature

* Torque limited by peak current of 67 Arms for PMC6-030
** Maximum speed considering minimum voltage of 230 V DC with field weakening
DIMENSIONAL DRAWINGS AND SIZES

IEC 132

- 4x Ø14.5 (0.57)
- Ø265 (10.4)

IEC 112

- 4x Ø14.5 (0.57)
- Ø250 (9.84)
- Ø215 (8.47)

Motor Overview

- Integrated encoder
- Standard: 2-poles resolver
- Special: SSI-absolute encoder

- Heavy duty connector
- Warning sticker
- 2 x Eyebolts - in center of gravity
- Type plate
- High thickness coating
- Standard: 320 µm
- Qualified for corrosion class: CSM long

- Vent plug

- PE-brake
- Integrated in the A-side motor housing
- Th = 50 Nm up to 150 Nm

- Standard flange size - IEC 112/132
- Material: Aluminium “seawater resistant”

- Plain shaft with feather key
- Outer diameter: 28j6/38k6
- Feather key: 8x7x50/10x8x70
- Length: 60 / 80
- Special Spline: Shaft (DIN5480)

- Shaft seal ring
- 1) NBR with Z-Lips
- 2) PTFE (dry run qualified)

- Pitch circle for coupling holes
- Diameter: 215 / 265

- Centering
- Diameter: 180j6 / 230j6

Table

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Flange Size</th>
<th>LB</th>
<th>E</th>
<th>D</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMC6-030</td>
<td>IEC 112</td>
<td>390</td>
<td>60</td>
<td>28j6</td>
<td>180j6</td>
</tr>
<tr>
<td>PMC6-045</td>
<td>IEC 132</td>
<td>427</td>
<td>80</td>
<td>38k6</td>
<td>230j6</td>
</tr>
<tr>
<td>PMC6-060</td>
<td>IEC 132</td>
<td>467</td>
<td>80</td>
<td>38k6</td>
<td>230j6</td>
</tr>
<tr>
<td>PMC6-075</td>
<td>IEC 132</td>
<td>506</td>
<td>80</td>
<td>38k6</td>
<td>230j6</td>
</tr>
</tbody>
</table>
OPTIMIZED PERFORMANCE WITH THE PITCH SERVO DRIVE

The Moog Servo Drive was developed for the harsh conditions in the rotating hub to be resistant to vibration, shock and permanent shock. It is ideally matched to the Moog Pitch Servo Motor for optimized performance and enhanced safety. They work seamlessly together with the Backup System in the event of a grid loss condition, with the Servo Drive providing control for extra safety. Its flexible and compact design provides selectable installation positions and operates reliably under internal switchgear cabinet temperatures from -30 to 70 °C (-22 to 158 °F) in your onshore and offshore installations. Easy remote maintenance through Ethernet and service diagnostics of the Servo Drive combined with the use of AC synchronous motor technology produce an extremely long life option for pitch control.

Note: DC motors are also available for pitch systems requiring this safety concept.

MOOG GLOBAL SUPPORT™

Wherever you are in the world, you can rest assured that Moog’s team of experienced, trained technicians are there for you with the service, training and parts you need to keep your wind turbines performing at peak condition. Moog Global Support™ is your direct link to optimal wind turbine reliability and performance.

Moog has offices around the world. For more information or the office nearest you, contact us online.

www.moog.com/wind

Moog is a registered trademark of Moog Inc. and its subsidiaries. All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries. ©2011 Moog Inc. All rights reserved. All changes are reserved.

Wind Turbine Pitch Servo Motor
TJW/Rev. 2, May 2011, Id. CDL31174-en

This technical data is based on current available information and is subject to change at any time by Moog. Specifications for specific systems or applications may vary.